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Monte Carlo calculations were carried out for a two-dimensional Ising 
model of a binary alloy with nearest-neighbor attractive interactions 
between like atoms. The pair correlation observed had the form of an 
exponentially damped cosine function with parameters varying as the 
one-sixth power of the time. 
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1. I N T R O D U C T I O N  

The Monte  Carlo technique has been used rather extensively for investiga- 
t ions o f  ordering phenomena  in two and three dimensions. (1-6~ In the case o f  
at tract ion between like, rather than unlike, a toms which results in phase 
separation rather than ordering, the calculation is a very much slower process 
and was not  suitable for computer  investigation until rather recently. Since 
analytic approximations for the kinetics o f  phase separation are not  com- 
pletely satisfactory, (7'a~ and computer  capabilities are now adequate, Monte  
Carlo methods seem appropriate.  
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For the initial investigation the two-dimensional rather than the three- 
dimensional case seemed appropriate. Exact results for the equilibrium 
structure are known; the results are easily displayed; the amount of computer 
time required is much less than for the three-dimensional case. As an "experi- 
ment"  for comparison with analytic approximations, the two-dimensional 
case is better (in the sense of more severe), since the discrepancy between 
exac.t, and mean-field theory results for equilibrium properties is so much 
greater in two dimensions than in three. 

2. METHOD OF CALCULATION 

The method of calculation was similar to that used for various calcula- 
tions in the ordering case34~ An array in computer memory was created to 
correspond to a square lattice with cyclic boundary conditions. A " 0 "  was 
used to represent an "A" atom and a "1" to represent a " B "  atom. The 
dimension of the array was variable, but generally taken as 80 by 80, for a 
total of 6400 "a toms."  Pseudorandom numbers, generated by the multiplica- 
tive congruence method, ~7~ were used to provide an initially random con- 
figuration of the desired composition, usually equiatomic, and then for 
decisions for atomic interchange. Direct interchange, rather than vacancy 
motion, was used to obtain more rapid transformation. 

At each step in the calculation a site was chosen at random, and then 
one of its nearest neighbors was chosen at random. If  the two atoms were 
alike, a new site was chosen. The process was repeated until two unlike nearest 
neighbors were found. Then the probability of interchange was calculated 
according to the rule 

p = e-~%~/(1 + e-a%J ~) (1) 

where An,j is the change in the number of unlike bonds that would result 
from the interchange and ~ is 2J/kT. 

This probability was compared with a random number between zero and 
one, and if p exceeded the value o f  the random number, the two atoms were 
interchanged: The number of tries is proportional to the elapsed time in a 
real system; we refer to " t ime"  in that sense, with unit time corresponding 
to one try per site. 

After a suitable number of tries the occupancy of the lattice was stored, 
and the pair correlation was defined by 

r ( r )  = (4/N) ~ [a(x) - c][a(x + r) - cl (2) 
sites 

where x specifies the site, r the displacement, c the fraction of B atoms 
(usually -12), and a, the occupancy (0 for A atom; 1 for B atom), was calculated 
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and stored for all neighbors out to 15 interatomic distances. The " t ime"  was 
increased after each cycle, since t ~/6 dependence was observed, as discussed 
below. The model is similar to that used by Kawasaki for the study of 
diffusion in binary systems. (~~ 

3. RESULTS 

The appearance of the "crystal"  in its initial random state, correspond- 
ing to a quench from infinite temperature, and after "anneal ing" at various 
temperatures below the phase boundary, is shown in Figs. 1-3. Phase separa- 
tion may be seen to occur by the formation and growth of clusters, but they 
look rather more like "seaweed" than like the roughly round clusters of 
traditional theory. The structures look somewhat like those observed in 
phase-separated glass. (~~ 

The effect of temperature can be seen quite clearly in the later stages of 
the process. In Fig. 3, where the temperature is well below the critical tem- 
perature, the regions are composed of virtually pure A and B. In Fig. 1, where 
the temperature is just below the critical, the presence of an occasional A 
atom in a B region, and vice versa, is quite evident. 
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Fig.  1. S t ruc ture  af ter  annea l ing  at  va r ious  t imes  with Zl/kT = 0.9. One  uni t  o f  t ime 
equa ls  one  t ry  per  site. 
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Fig. 4. Pair correlation as a function of interatomic distance and time. 2J /kT  = 0.9. 

The pa i r  cor re la t ion  func t ion  provides  a more  quant i ta t ive  way  o f  
present ing  the kinet ics  o f  the process.  The  po in ts  p lo t t ed  in Figs. 4-6  represent  

the results  o f  the M o n t e  Car lo  ca lcula t ions ;  the solid lines represent  ana ly t ic  
app rox ima t ions  to the results.  

The analy t ic  fo rm was based  on the observa t ion  tha t  for  any  t ime greater  
than  zero and  any  t empera tu re  be low the phase  b o u n d a r y  the pa i r  cor re la t ion  
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Fig. 5. Pair correlation as a function of interatomic distance and time. 2J /kT  = 1.2. 
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Fig. 6. Pair correlation as a function of interatomic distance and time. Z I / k T  = 1.9. 

function depended mainly on the magnitude of r and had the form of an 
exponentially damped cosine function: 

P(r) ~ e -s~ cos(2rrr/w) (3) 

with s .,~ Sot-1~6 and w ,~ wot ~16. 

Some modification of these simple forms is obviously necessary to obtain 
sensible behavior in the limits of very short and very long times. In the very 
short-time limit the wavelength w cannot be allowed to become arbitrarily 
small; if w becomes less than four, the cosine term becomes negative for 
r = 1. This implies a negative correlation for nearest neighbors, which is 
physically absurd. This suggested the form 

w = (a2t + 46) 1/6 (4) 

The functional form for s must be modified to obtain proper behavior at 
long times as the equilibrium structure is approached. If  s were allowed to 
increase without limit, the nearest-neighbor pair correlation would approach 
one, rather than the correct equilibrium value, given by (~2~ 

l~m___ (1 +-'----~x) I'2 - ~rl ~ ] / 1 +  x ] 1 / 2 / ~ -  (1 _ \ 2  x )K(x ) )  (5) 

where x = sinh-2(2J/kT) and K(x)  is the complete elliptic integral of the 
first kind. 

A dependence of s on r is also needed, so that the correlation does not 
vanish in the limit of large r. At equilibrium the composition of the two 
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phases  is given by aa) 

cl = �89 - (1 + z2)1/4(1 - z2)-1/2(1 - 6z 4 - z4) 1161 

c2 = �89 + (1 + z2)l/~(1 - z2)-lJ2(1 - 6z 2 + z~) l/a] (6) 

where z = e -2J/kr, a n d  wi thin  one phase  the cor re la t ion  for  very d is tan t  

ne ighbors  is 

G. = 4(c~ - �89 = 4(c2 - �89 (7) 

Both  condi t ions  are  satisfied i f  s is t aken  o f  the form 

s(r, t) = (~o + al/t)l~6/[ 1 + )'or6/( 1 + aa/t)] lj6 

where 

~o = [(In F M ) -  6 _ (In F L ) -  6 ] -  z 

and  

In the l imi t  t - +  oo 

and  for  r --- 1 

Vo = {[(ln rL)/(ln G, ) ]  6 - 1} -~ 

s = ~ol/6(1 + 9,or6) -~/6 

(8) 

(9) 

( io)  

(11) 

(12) sr = [~o/(1 + yo)] 1/6 = - I n  F ~  

and  the l imit  for  r ~ oo 

sr --~ (a0/Yo) 1/6 = - In PL (13) 

A fur ther  cor rec t ion  should,  o f  course,  be made  for  the fact  tha t  the 
ca lcula t ion  was carr ied out  for  a finite system; but  since at  the end o f  the 
ca lcula t ion  the clusters were still small  in compar i son  with the d imensions  
o f  the system, this cor rec t ion  was neglected.  

The  final funct ional  fo rm used for  f i t t ing the da ta  was 

r ( r ,  t)  = e -s(r't>" cos[2r;r/w(t)] (14) 

with s(r,  t)  and  w(t)  given by  (8) and  (4). 
The values o f  the pa rame te r s  a l ,  a2, and  aa were de te rmined  by var iable  

met r ic  min imiza t ion .  The numer ica l  results  for  each of  the tempera tures  
s tudied  are  given in Table  I, and  the ca lcula ted  funct ions  are shown in 
Figs. 4--6. 

Table I 

Zl /kT T/Tc I'M FL al a2 aa 

0.9 0.9793 0.75652 0.56148 3.095 4.147 x 104 1.0 x 1012 
1.2 0.7345 0.95454 0.94791 1.810 2.016 x 104 1.2 x 1012 
1.5 0.5876 0.98834 0.98761 1.568 1.212 x 104 2.8 x 1011 

i 
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4. D I S C U S S I O N  

It is apparent that the simple functional form used here is by no means 
perfect, but it provides a better fit than any of a variety of other simple 
functional forms tried, and is sufficiently good to be used for a general 
discussion of the process. 

The wavelength parameter w is a measure of the cluster size: When the 
distance for which the correlation is evaluated is less than the effective cluster 
radius the correlation is positive; when the distance becomes greater than the 
cluster radius any pair at this distance is more probably unlike than like, so 
the pair correlation becomes negative. The first zero of the pair correlation 
function occurs when r equals one quarter wavelength. Thus we can regard 
w/4 as an effective cluster radius. Phase separation begins with the smallest 
possible clusters, and proceeds by a coarsening process in which the clusters 
grow as the one-sixth power of the time. 

The nearest-neighbor pair correlation is proportional to the energy 
change in the system; we can use it as a measure of the degree of completeness 
of the transformation. By this measure the process is largely complete while 
the clusters are still quite small, typically about five interatomic distances. 

Change of annealing temperature has a definite, but not very dramatic, 
effect on the nature of the cluster growth. The parameter at decreases with 
decrease in annealing temperature, corresponding to greater correlation 
within the clusters at short distances. The parameter a2 also decreases, 
indicating less rapid coarsening at temperatures further below the critical 
temperature. In a physical system, of course, the " t ime"  used here must be 
multiplied by the rate at which " t r ies"  are made, which will have the usual 
exponential dependence on temperature of a diffusion-controlled process. 
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